Definición de función cuadrática

En el terreno de las matemáticas se denomina función al vínculo entre dos conjuntos a través del cual a cada elemento del primer conjunto se le asigna un solo elemento del segundo conjunto o ninguno. La idea de cuadrático, por otra parte, también se usa en el ámbito de las matemáticas, aludiendo a aquello relacionado con el cuadrado (el producto de la multiplicación de una cantidad por sí misma).

Función cuadrática

En este marco, se llama función cuadrática a la función matemática que se puede expresar como una ecuación que tiene la siguiente forma: f (x) = ax al cuadrado + bx + c.

En este caso, a, b y c son los términos de la ecuación: números reales, con a siempre con valor diferente a 0. Al término ax al cuadrado es el término cuadrático, mientras que bx es el término lineal y c, el término independiente.

Cuando están presentes todos los términos, se habla de una ecuación cuadrática completa. En cambio, si falta el término lineal o el término independiente, se trata de una ecuación cuadrática incompleta.

La representación gráfica de una función cuadrática es una parábola. La orientación de la parábola, el vértice, el eje de simetría, el punto de corte con el eje de las coordenadas y el punto de corte con el eje de las abscisas son características que varían de acuerdo a los valores de la ecuación cuadrática en cuestión.

Cabe destacar que las funciones cuadráticas aparecen en la geometría y en la cinemática, entre otros contextos, expresadas mediante distintas ecuaciones.

  • Compartir  

Referencias

Autor: Julián Pérez Porto. Publicado: 2017.
Definicion.de: Definición de función cuadrática (https://definicion.de/funcion-cuadratica/)

Buscar otra definición