Definición de geometría descriptiva

La geometría es una rama de las matemáticas dedicada al análisis de las magnitudes y de las propiedades de las figuras, tanto en el espacio como en un plano. De acuerdo a su objeto de estudio específico, es posible diferenciar entre distintas especializaciones o áreas de la geometría.

Geometría descriptiva

La geometría descriptiva, en este marco, está centrada en la resolución de problemas de la geometría del espacio a través de operaciones que se desarrollan en un plano, representando en él las figuras de los cuerpos sólidos.

Para comprender la definición de geometría descriptiva, por lo tanto, tenemos que entender a qué se refieren varios conceptos. La geometría del espacio es aquella geometría que estudia los objetos tridimensionales: es decir, que tienen tres dimensiones. Los sólidos son, justamente, cuerpos tridimensionales.

La geometría descriptiva, en definitiva, posibilita la representación del espacio tridimensional en una superficie bidimensional. De esta forma ayuda a resolver cuestiones vinculadas a problemas espaciales, pero en dos dimensiones.

Los antecedentes de la geometría descriptiva se remontan a la antigüedad. Precisamente, existe un gran número de dibujos que fueron hallados en cuevas pertenecientes a la prehistoria que nos demuestran esa necesidad que el ser humano siempre ha sentido de expresarse mediante el dibujo para plasmar representaciones de su entorno. Es importante señalar que gracias a estas creaciones, hoy en día contamos con mucha información para intentar comprender cómo vivieron nuestros antepasados, cuáles eran sus necesidades y qué descubrimientos realizaron a través de la observación, por ejemplo.

Claro que fue recién con la llegada del Renacimiento que el ser humano empezó a desarrollar gráficos en profundidad, es decir, a incluir en sus dibujos este eje dimensional sin el cual no podemos imaginar la vida. Con la consolidación de las técnicas geométricas, se perfeccionó la representación de las figuras de los cuerpos tridimensionales en un plano y se sentaron las bases para el dibujo técnico.

Hasta que surgió el uso de la profundidad en las representaciones gráficas, era necesario hacer dibujos muy fieles a la realidad, como si se tratara de fotografías, ya que no se tenía en cuenta la profundidad de los objetos desde un punto de vista geométrico. Las matemáticas aporta una serie de herramientas conceptuales que facilitan el dibujo, ya que descomponen la realidad en una serie de figuras muy simples, cada una con sus propiedades. Algo similar ocurre con la notación musical, que permite estudiar y memorizar melodías a través de su análisis, algo mucho menos demandante para el cerebro que el mero proceso de recordarlas en crudo.

Geometría descriptivaLa cantería es una de las disciplinas que, sobre finales de la Edad Media, dieron lugar a la creación de obras en tres dimensiones de gran complejidad, en especial de las piedras que se usaban para unir los arcos o las bóvedas.

Con el paso del tiempo, muchas personas se especializaron en el uso de la perspectiva, y así surgieron las bases formales de la llamada geometría proyectiva, la parte de las matemáticas que se enfoca en el estudio de las figuras geométricas sin incluir la medida. Fue recién en el año 1795 que el matemático Gaspard Monge publicó una obra llamada “Geometría descriptiva”.

La arquitectura, la topografía y la ingeniería son algunas de las ciencias que apelan a la geometría descriptiva, que se constituye como una herramienta útil para el desarrollo de cualquier tipo de diseño.

En otras palabras, la geometría descriptiva resulta ideal para cualquier disciplina que exija la representación de elementos sobre una superficie plana, que en el pasado solía ser una hoja de papel y en la actualidad, el lienzo virtual que nos proporcionan los programas informáticos de diseño.

  • Compartir  

Referencias

Autores: Julián Pérez Porto y Ana Gardey. Publicado: 2018. Actualizado: 2019.
Definicion.de: Definición de geometría descriptiva (https://definicion.de/geometria-descriptiva/)

Buscar otra definición